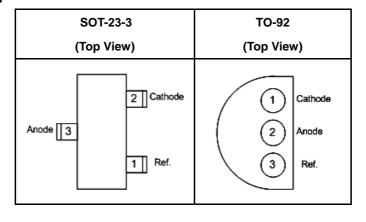
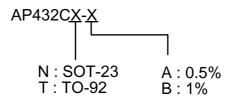
Advanced Power Electronics Corp. Adjustable Precision Shunt Regulator

Description

The AP432C is a low voltage three terminal adjustable shunt regulator with a guaranteed thermal stability over applicable temperature ranges. The output voltage can be set to any value betwen V_{REF} (approximately 1.24 V) to 8V with two external resistors. This device has a typical output impedance of 0.30 Ω . Active output circuitry provides a very sharp turn on characteristic, making this device excellent replacement for Zener diodes in many applications.


The AP432C is characterized for operation from 0° C to 105° C, and four package options (SOT-23 and TO-92) allow the designer the opportunity to select the proper package for their applications.

Features


- Low voltage operation (1.24V)
- Adjustable output voltage V₀ = V_{REF} to 8V
- Wide operating current range 60μA to 100mA
- > Low dynamic output impedance 0.30Ω (Typ.)
- > Trimmed bandgap design up to $\pm 0.5\%$.
- ESD rating is 2.5KV(Per MIL-STD-883D)
- ➢ RoHS Compliant and 100% Lead (Pb)-Free.
- Halogen Free Product

Application

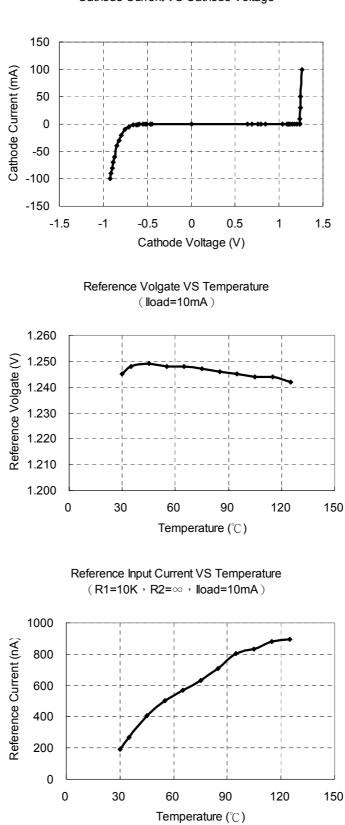
- Linear Regulators
- Adjustable Supplies
- Switching Power Supplies
- Battery Operated Computers
- Instrumentation
- Computer Disk Drives

Ordering Information

This datasheet contains new product information. Advanced Power Electronics Corp. reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sale of the product.

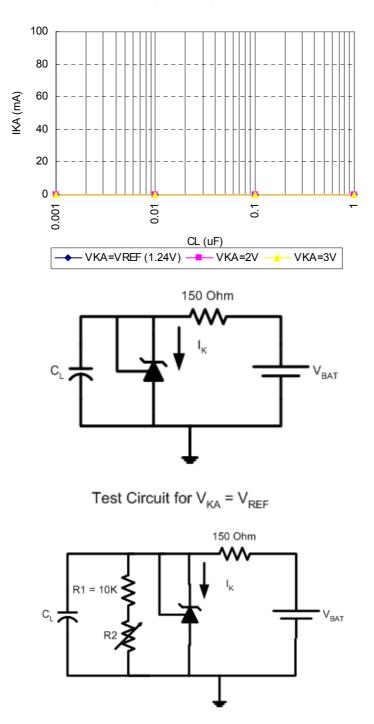
Pin Configuration

Absolute Maximum Rating


Parameter	Symbol	Maximum	Units	
Cathode Voltage	V _{KA} 8		V	
Continuous Cathode Current	l _{KA}	150	mA	
Reference Current	I _{REF}	3	mA	
Operating Junction Temperature Range	TJ	150	°C	
Storage Temperature Range	T _{STG}	-45 to 150	°C	
Thermal Resistance	0	230 (SOT-23-3)	°C/W	
	AL Θ	220 (TO-92)	0/11	
Lead Temperature (Soldering) 10 seconds	T _{LEAD}	260	°C	

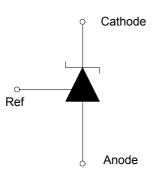
Electrical Characteristics

Parameter		Symbol	Test Conditions & Circuit	Min	Тур	Max	Unit
Reference Voltage	0.5%	Vref	Test circuit #1 Vка = Vref, Iка = 10mA	1233	1240	1246	— mv
	1.0%			1228	1240	1252	
	erence Voltage over erature Range	VI(DEV)	Test circuit #1 V _{KA} = V _{REF} , I _{KA} = 10mA, T _A = 0°C - 105°C		10	25	mV
_	n Reference Voltage n Cathode Voltage	$\Delta V_{REF} / \Delta VKA$	Test circuit #2 I_{KA} = 10mA, ΔV_{KA} = 8V to V_{REF}		-1.0	-2.7	mV/V
Referen	ice Current	I _{REF}	Test circuit #2 I _{KA} = 10mA, R1=10kΩ, R2 = ∞		0.15	2	μA
	erence Current over erature Range	I _{I(DEV)}	Test circuit #2 I _{KA} = 10mA, R1=10kΩ, R2 = ∞ T _A = 0°C - 105°C		0.10	0.50	μΑ
	hode Current for Julation	I _{MIN}	Test circuit #1 V _{KA} = V _{REF}		60	100	μA
Off-state Ca	athode Current	I _{OFF}	Test circuit #3 V _{KA} = 8V, V _{REF} = 0		0.04	0.8	μA
Dynamic Impedance		Z _{ka}	Test circuit #1 $I_{KA} = 100 \mu A - 80 m A,$ $V_{KA} = V_{REF}, f \le 1 k H Z$		0.30	1	Ω

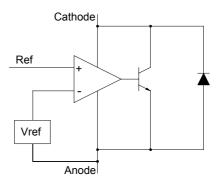

Typical Performance Characteristics

Cathode Current VS Cathode Voltage

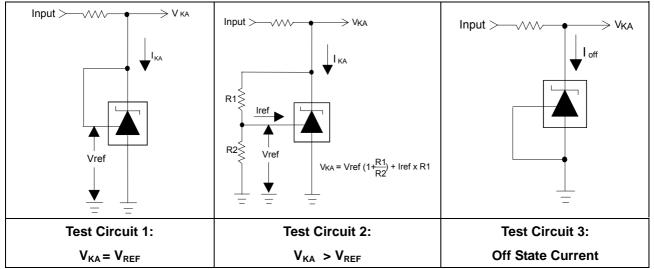
Stability Boundary Condition

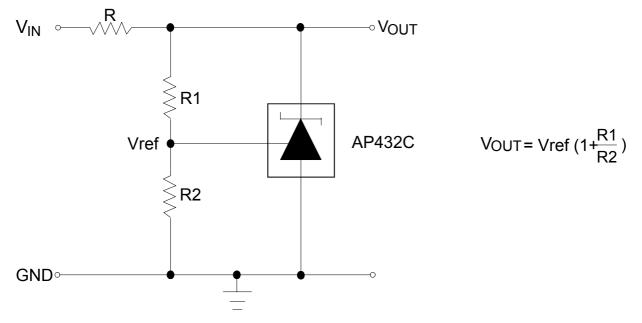

Test Circuit for V_{KA} = 2V, 3V

The areas under the curves represent conditions that may cause the device to oscillate. For $V_{KA} = 2V$ and 3V curves, R2 and V_{BAT} were adjusted to establish the initial V_{KA} and I_K conditions with CL = 0. V_{BAT} and C_L then were adjusted to determine the ranges of stability. As the graph suggested, AP432C is unconditional stable with I_K from 0 to 100mA and with C_L from 0.001uF to 1uF.

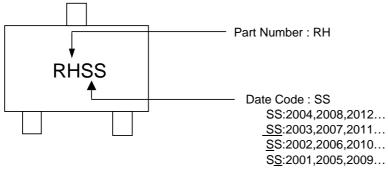


AP432C


Symbol Diagram


Block Diagram

Test Circuits


Application Circuit

MARKING INFORMATION

SOT-23

TO-92 Part Number 432C YWWS Date Code (YWWS) Y : Last Digit Of The Year WW : Weak S : Squence